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Encryption scheme

* An (G,E,D) is 3 probabilistic algorithms:
key generation G(1") outputs secret key k of length n

[n - called the security parameter]
Encryption E(k,m) outputs ciphertext c
Decryption D(k,c) outputs plaintext m

Correctness: D(k,E(k,m)) = m Vm in message space M
Security Definition...with respect to adversaries

* K = key probability space Prob[K=k]

M = message probability space, Prob[M=m]

e C =ciphertext probability space. Prob[C=c] =Prob[E(K,M)=c]
(over K and M and coins of E)
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Shannon ‘49:
Perfect Secrecy Theory

Adversary: unbounded computationally,
security analysis is information theoretic


http://scienceworld.wolfram.com/biography/photo-credits.html#Shannon

What Does the Adversary Know?

» Kerckohoff Law: A cryptographic system should be secure
even if everything about the system (the algorithms G,E and D)
is known to the adversary except for the key and the
randomness used by legal users in the course of running E & D

 Good for ML too...

* Ciphertext Only: Can see c transmitted over an insecure
channel



Perfect Secrecy (aka Shannon secrecy)

:When ar.v.
o (random variable)
(G, E,D) satisfies Appears in a context of
3 prob statement., the

Shan non-secrecy if prob is taken over the

V probability distribution over M, OIS G il 7

Y C EC, vmeM Slight NotationaIAbuse:,’AII
capital letters denote r.v’s

Pr [M=m] = Pr[l\/]=m |E(K, M)=C] and prob distribution at the
same time

A-prior1 = A-posteriori

Note : Adversary is not explicitly used
In the definition but Is implicitly there
computing probabilities. ..



Perfect Indistinguishability (Alternative Definition)

Let EVE be an unbounded adversary,

(G,E,D) satisfies EVE can’t distinguish worlds apart
Perfect indistinguishability if :

ope . . . / W ld O o \ / l 1 o \
VProbability distribution over M or : World 1:
YV my, m; € M, k < G(1") k< G(1")
VCEC \ C:E(k,mo)J \ C=E(k;m1)J

Prob [E(K,m,)=c] = Prob [E(K,m,)=C]
Vmg,my
Prob,(EVE (c)=1 on c € E(K,m,) ) =
Prob,(EVE (c)=1 on ¢ € E(K,m,) )



The Definitions are Equivalent

Theorem:
(G,E,D) satisfies Perfect indistinguishability
if and only if
(G,E,D) satisfies Perfect secrecy.

Proof: Simple use of Bayes Theorem
In notes



Shannon Secrecy is Achievable via One Time Pad

One Time Pad: G chooses k at random in {0,1}"
E(k,m)=k®m,
D(k,c)=k®c

How about using one-time pad to send more than one
message?

Q: Would it preserve Shannon Secrecy?

A: No, Consider the case of two messages each of length
n, each encrypted by “xoring” the message with the
same sk.

Shannon Theorem: For any perfect secrecy schemes, |[K| > [M|
Namely, the key is as long as the message.



One Time Pads

Disadvantage

* The size of the key is huge: as many key bits as message bits and need
to know in advance how many message bits

» Receiver needs to know which key goes with which ciphertext (some
synchronization or state)

Advantage
By Shannon’ s Theorem, it is IMPOSSIBLE TO DO ANY BETTER



How to get around Impossibilities (first lecture)

v'Weaken the adversary model
* Weaken your definition of security

* Find new class of assumptions



Prepare for Worst Case Adversary Strategy

Al systems are VERY attractive targets

* Adversarial modeling:

» Prepare for worst case adversary

» Probabilistic Polynomial Time



Probabilistic Polynomial Time algorithms (PPT)

* Aruns in polynomial time O(n¢) for some c>0.
where n is its input length (security parameter)

* Alis randomized: can flip fair coins
Vinput, Ais correct or
with negligible probability A outputs .

* Monte Carlo: Vinput, Ais correct
With all but negligible probability



Modern Cryptography

1976, New Directions in Cryptography

We stand today on the brnink of a revolution in cryptography.
The development of cheap digital hardware has freed it from

the design himmtations of mechanical computing and brought
the cost of high grade cryvptographic devices down to where The Adve I'Sd ry

thev can be used in such commercial applications as remote I . I .
cash dispensers and computer termunals. In turmn. such applica- »y PO Vnomla tlme

tions create a need for new tvpes of crvptographic svstems
W. Diffie, M. Hellman, “New Directions in Cryptography”, 197?.



http://modular.fas.harvard.edu/edu/Fall2001/124/lectures/lecture8/html/img19.png

Lessons from Impossibilities (first lectre)

v'Weaken the adversary model
* Weaken your definition of security

* Find new class of assumptions



Encryption scheme (Revisit Def)

An encryption scheme (G,E,D) is a triplet of PPT algorithms s.t.
* key Generation G(1") outputs pairs of keys (sk,pk) of length n
[n is also called the security parameter]
* Encryption E(pk,m) outputs ciphertext c
* Decryption D(sk,c) outputs plaintext m’

Requirements:
* Correctness: D(sk,E(pk,m)) = m Ym with high probability over (implicit)
coins of G, Eand D

* Security Computational Indistinguishability



Computational Indistinguishability

(G,E,D) satisfies computationally
indistinguishability if

VPPT EVE,
V PPT sampleable M,
Y my, my in M(17),

i

|Prob,(EVE (c)=1on c € E(K,m,) ) -
Prob,(EVE (c)=1 on c € E(K,m,) )|<
negl(n)

/ World 1:
ke G(1IM

m; < M(")

c =E(k,my)

@orld O: \
k— G (1n)

my, < M (1")
\C=E(k,m0) /

~

/

PPT EVE can’t distinguish t \évorlds

apart

2




Important Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p.

Definition: A function u: N = R is negligible if

for every polynomial function p,
there exists an ng

s.t.
for all n > ny:

p(n) < 1/p(n)

Events that occur with negligible probability look to poly-
time algorithms like they never occur.

Notation: negl(n) denotes a function which is negligible in n



Game Formulation: Computational Indistinguishability

No PPT adversary can win the following game:

My, My

Aralleree C=E(K, mp) ber{O,l}

Challenge
b'e{0,1!}

Adversary wins: if b=b’
better then %+ 1/P(n) for some polynomial P (i.e non-negligible (security parameter)



Now Can Ask New Questions

Can A and B meet to agree on key and subsequently exchange
P(n) messages securely, where P is any polynomial?

Yes

Can A and B exchange messages without meeting
Yes

How?



Lessons from Impossibilities (first lectre)

v'Weaken the adversary model
v"Weaken your definition of security

* Make assumptions



Ambitious Plan for next 2 lectures

New Primitive: Secure Pseudo Random Generators (PRG)

PRG imply Encryption schemes that satisfy Computational Indistinguishability

with |keys| << |message bits|

Build PRG from One Way Functions

Candidate One Way Functions

New Primitive: Secure Pseudo Random Functions (PRF)

Applications of PRF
* 3 concepts which are not PAC learnable



Pseudo-random Generators

Informally: Deterministic Programs that stretch a “truly
random” seed into a (much) longer sequence of
“seemingly random” bits.

seed ——> PRGG F—Db1b2b3..




What about Sources of True Randomness
for the seed?

1) Specialized Hardware: e.g. Transistor noise
2) User Input: Every time random number used,
user is queried

Usually biased, but can “extract” unbiased bits
assuming the source has “some structure and enough
entropy” [von Neumann, Elias, Blum]

True randomness is an expensive

non-replicable commodity.



Strong Pseudo Random Number Generator

Def 1 [Indistinguishability]

“No polynomial-time algorithm can distinguic” between the
output of a PRG on a random seed vs. a ,\\ andom string”

= "as good as” a truly random string * \’@ vractical purposes.

\QV

B
Def 2 [Next-bit Unpredic* Q% 1
“No polynomial-time 2’ QV.n can predict the (i+1)t bit of the

output of a PRG o &V first i bits”
K




PRG Def 1: Indistinguishability

Definition [Indistinguishability]:

A deterministic polynomial-time computable function G: {0,1}" —
{0,1}Mis a PRG which “passes all poly time statistical tests” if

(@) m>nand

(b) for every PPT algorithm D, there is a negligible function neg|
such that:

| Pr[D(G(U,))=1]-Pr[ D(U,) =11 = negl(n)

Notation: U, (resp. U,.) denotes the uniform distribution on n-bit
(resp. m-bit) strings; m is shorthand for m(n).




PRG Def 1: Indistinguishability

Definition [Indistinguishability]:

A deterministic polynomial-time computable function G: {0,1}" —
{0,1}Mis a PRG which “passes all poly time statistical tests” if

(@) m>nand

(b) for every PPT algorithm D, there is a negligible function neg|
such that:

| Pr[D(G(U,))=1]-Pr[ D(U,) =11 = negl(n)

We call D that takes a sequence and outputs O or 1
a statistical test.




PRG Def 1: Indistinguishability

Def: A deterministic function G: {0,1}" — {0,1}™ is a strong PRG
if m > n and for every PPT algorithm D,

there is a negligible function negl such that:
| Pr[D(G(U,)) =11-Pr[ D(U,) =1] | = negl(n)

WORLD 1: WORLD 2:
Pseudorandom Worlad > | Truly Random World
y < G(U,) 9 U

PPT Distinguisher gets y but
cannot tell which world she is in




Why is this a good definition

Good for all Applications:

As long as we can find truly random seeds, can
replace true randomness by the output of
PRG(seed) in ANY “computational” setting.

If it behaves differently,
can convert “application”=statistical test

Enables to overcome Shannon Theorem
lkey|>=|message|



PR(G — (How to Encrypt n+1 bits using an n-bit key)

Gen(1™): Generate a random n-bit key k. |

E(k,m) where m is an (n + 1)-bit message: For longer messages
( ) ( ) & Expand G(k) for more bits

Expand k into a (n+1)-bit pseudorandom string k' = G (k)

One-time pad with k': ciphertextis k'@®m (Length extension:

If there is a PRG that stretches
D(k’ c) outputs G(k)@c by one bit, there is one that stretches |

Correctness: D(k,c) outputs G(k)®c = G(k)DG(k)®m = m

Security: EVE can’t distinguish between U, ,,®m, and U,,,m, Since
they are both uniform. If EVE can distinguish between

G(U,)®m, and G(Un)®m,

then EVE can distinguish G(U,) from U,,, contradiction



Randomness is the foundation of cryptography
Cryptographic keys have to be unpredictable to the adversary

e Cryptographic algorithms use additional randomness (beyond the
key)

e |f the random bits are revealed (or are predictable) the entire
structure can collapse

Cryptography

whae -



Randomness in Machine Learning

Randomness
D  Source

i

input =

LLM algorithm

——— OUTPUT

Crucial for training (SGD, ERM use sampling)

and for generating

Raises interesting questions
* Can bad use of randomness lead to bias outcomes
* (Can use of special PSRG enforce ML-desirable properties



Pass All Statistical Test is a great
definition

But: it’s hard to work with. How could you
show that generator G passes ALL statistical
tests?

Do PRG that pass all statistical tests even
Exist?



PRG Def 2: (Next-bit) Unpredictability

Definition [Next-bit Unpredictability]:
A deterministic polynomial-time computable function G: {0,1}" —
{0,1}"is a PRG if

(@) m>nand

(b) forevery PPT algorithm PRED and every i € [1..m], there is 4
negligible function negl such that:
Pr[PRED(y,Y,...Y;.1) = ¥il < 72 + negl(n)

 Overy « G(U,):

Notation: y, denotes the i-th bit of y.
y;._; denotes the first i bits of y.



PRG Def 2: (Next-bit) Unpredictability

Definition [Next-bit Unpredictability]:
A deterministic polynomial-time computable function G: {0,1}" —
{0,1}"is a PRG if

(@) m>nand

(b) forevery PPT algorithm PRED and every i € [1..m], there is 4
negligible function negl such that:
Pr[PRED(y,Y,...Y;.1) = ¥il < 72 + negl(n)

 Overy « G(U,):

Notation: Call PRED a “next-bit test” and if (b) holds, we say
that G “passes all next bit tests *



Def 1 and Def 2 are Equivalent

Theorem: A PRG G passes all polynomial time statistical tests if
and only if it passes all polynomial time next-bit tests

Proof: —» Easy,
e

Harder.Show that any statistical test can be turned
into a predictior for a next bit, via a Hybrid Argument

Next: Using One Way Functions will Build a PRG and
prove that it passes all next-bit tests, hence CSPRG



One Way Functions

asy to compute in PPT

hard to invert in
PPT on average

f:{0,1}* = {0,1}* is a one-way function(OWF) if:

e Easy to Evaluate: 4 PPT algorithm A s.t. A(x)=f(x) V x.

 Hard to Invert: ¥V PPT algorithms Inv, V n sufficiently large,
prob ( Inv(y) =x’ s.t. y=f(x’)) < neg(n)

x € {0,1}", y=f(x), coins of Inv

Length preserving OWF: functions s.t. [f(x]) = |x].

One-way Permutations: One-to-one length preserving OWF



Collection of One-way Functions

A function (collection) {f,,},,ey Where f,: {0,1}"— {0,1}™(™) js
one-way if easy to evaluate f (x) for all x, and
hard to invert: VPPT Inv, Vn sufficiently large

Pr[Inv(y) = x's.t.y = f,,(x")] < negl(n)
over x < {0,1}"; vy = £, (x);

* Can always find an inverse with unbounded time

e ... butshould be hard with probabilistic polynomial time




One-way Functions: Candidates

Subset sum:

n
f(aq, ..., An, X1, .0, X)) = (Qq,...,An, Lj=1 X;a; mod
2n+1)

where a; random n- blt ngmbers and x; are random bits.
Rabin: f(x) mod

Is as hard to invert as
factoring N

RSA. fy(x) = x® mod N

DH, ,(x) = g”"x mod p
One-way functions candidates are abundant in nature.

Many other candidates from number theory, coding theory,
combinatorics later in class.



Attempt: Strong- PSRG
from one-way permutations

ldea: Let f be one-way permutation.
 Choose random seed s in {0,1}"
* Compute f(s) f2(s) f3(s) ... f ™(s)
 Qutputin reverse order

* Why is this a good idea, Intuitively, ?
* Somewhat Unpredictable: From fi(s) can’t compute f"(s)
* Why not good enough ?
* Even though you cannot predict f-}(s) some bits of it may
be predictable. Exercise: There are one-way functions for which it is

easy to compute the first half of the bits of the inverse.

* Still, may be can be salvaged: there must be some bits of f(s)
that are hard to compute for a random s.



Hard Core Predicates for OWF

A hard-core predicate for one-way function f:{0,1}* -{0,1}*
is a Boolean predicate B: {0,1}* - {0,1} such that
B(x) is easy to compute given x but hard to predict given f(x)

Hard

Y PPT algorithm P (“predictor”), /\

E _
Prob [ P(y) = B(x) |= % + neg(n) A

(over xin {0,1}", y=f(x)
and Pred’s coins ) lEa‘SY/
Unpredictable

B(X)



Discussion on the Definition

1. Some functions can have information-theoretically hard to
guess predicates (e.g., compressing functions)

2. We’ll be interested in settings where x is uniquely determined
given f(x) (i. e permutations) yet B(x)is hard to predict given

F(x).

3. Ex: LSB(x) is hard-core for RSA(x) but not for DH(x)

4. Is there a universal hard-core predicate?



Constructing PSRG

Theorem: If there exist one-way-permutations f with hard core
bit B, then there exist strong PRG

G:{0,1}"->{0,1}?" for any polynomial P.

Proof: Let P be a polynomial function, set m=P(n)
On input seed s from U,,
G(s): (1) compute f(s) f(f(s)) ... f(f™2(s))
(2) output B(s) B(f(s)) ... B(f™(s))



Picture Better than 1000 words

Input

Internal
Configuration

f(s)

t1¢)(s)

FOTs)

fM(s)

Output

B(s)
B(f(s))

B(f ©)(s))

B(f (™7)(s))



Proof : Show outputs of G pass all next-bit tests.

Suppose, for contradiction, 3bit location j<m and next bit
predictor Ps.t.  pg v aunP(Y1Y2-Y;1) = yi] > % + 1/P(n) for poly P

Then show a predictor P’ for Hard-Core B of f:

P’ (f(x)): |
1. compute f(f(x)) ... f(FI(x)
2. compute B(f(x)) ... B(f 1(x))

\};-1 Y1
3. Output P(y; ... vY;,)

EUREKA: the next bit y, in the sequence should be B(x)
And we assumed that P predicts next bit y; with prob. %2+ 1/P(n)



Proof : Show outputs of G pass all next-bit tests.

Suppose, for contradiction, 3bit location j<m and next bit
predictor P st pr ¢ 4 )P(y1Yz.--Yj4) = ¥ > Y2 + 1/P(n) for poly P

Then show a predictor P’ for Hard-Core B of f:

P’ (f(x)) |
1. compute f(f(x)) ... f(FI-1(x))
2. compute B(f(x)) ... B(f (x))

})j'-1 Y1
3. Output P(y; ... Yjq)

Claim: Pr[P’(f(x)=B(x)]=Prob[ P(b, ... b1 )=b; ]>"2 + 1/P(n) contradiction
Essential to Proof: fis a permutation =y, ... y;is the same distribution
as P is expecting and will perform well on.



We just went through
A sequence of reductions

 Since B is hard-core for one-way function f, P’ cannot exist

= Next bit test P cannot exist

= G passes all next bit tests

=G passes all polynomial time statistical tests

=G outputs are computationally indistinguishable from random



One Way Functions vs.
One Way Permutations

Theorem: If 3Jone-way-functions ,

then 3CS-PSRG
G:{0,1}"->{0,1}F™ for any polynomial P.

Proof: Much Harder
See web site [HILL]



Does every one-way function
have a hardcore bit?

(Hard) Exercise: There are functions that are one-way, yet every

bit is somewhat easy to predict (say, with probability% + 1/n).

So, we will generalize the notion of a hardcore “bit”.



Goldreich-Levin (GL) Theorem
Every OWF Has an Associated Hard-Core Bit

Let {B,:{0,1}"*—> {0,1}} where
B.(x) ={r,x) = Y-, rix; mod 2

be a collection of predicates (one for each r). Then, a random
B, is hardcore for every one-way function F. That is, for every
one-way function F, every PPT A, there is a negligible function

us.t. 1
Prlinv(f(x),7) = B.(x)] <5 + u(n)

2
x < {0,1}";r « {0,1}":

Alternative Interpretation 1: For every one-way function F,
there is a related one-way function f'(x,r) = (f(x), r) which
has a deterministic hardcore predicate.




Example of strong PRG: based on Goldreich-

Levin Hard Core Bit

Input Internal
Configuration

r X > f(x)

fA(x)

fO(x)

Output

B(x,r) =<x,r>
B(f(x),r)=<f(x),r>

B(f &)(x),r)=<f(*(x),r>

O]

B(f (+(x),r)=<f")(x),r>

* Use the same r and even can make r public



Extenders

* Theorem: If there exists a CS-PSRG that extends n bits to n+1 bits,
then there exists a CS-PSRG that extends n bits to any polynomial
length.



CS PRG with a Single bit extension can be converted to
many bit extension (same proof idea)

Internal

Input Configuration Output Building Block:
X o[ x1=9()|, 9(x) 1 Single Bit
X2 =9(X1)|n g9(X1)| o1 SARGE
CS-PSRG
x3 29(x2) |, g(x2)| o1 g:{0, 1" > {0, 1}~

Xm :Q(Xm-1) | n 9(Xm) | n+1

* Excersize: what are the hybrids you would define to
prove that this works?



What did we do today

1. Defined one-way functions (OWF).

2. Defined Hardcore bits (HCB).

3. Show that one-way permutations (OWP) = PRG

(in fact, one-way functions = PRG, but that’s a much
harder theorem)

4. Goldreich-Levin Theorem: every OWF has a HCB.




Extra slides

Notation, Missing Proofs
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