
Cryptography and Machine Learning:
Foundations and Frontiers

Lecture 4: Crypto Basics 1

Feb 12, 2026

message m

Secret Communication

BobAlice

Adversary

Vincent

Encryption scheme

• An encryption scheme (G,E,D) is 3 probabilistic algorithms:
• key generation G(1n) outputs secret key k of length n
 [n - called the security parameter]
• Encryption E(k,m) outputs ciphertext c
• Decryption D(k,c) outputs plaintext m

• Requirements:
• Correctness: D(k,E(k,m)) = m ∀m in message space M
• Security Definition…with respect to adversaries

• K = key probability space Prob[K=k]

• M = message probability space, Prob[M=m]

• C = ciphertext probability space. Prob[C=c] =Prob[E(K,M)=c]

 (over K and M and coins of E)

cipher text c=E(k,m)

Secret Communication

BobAlice

Vincent

k k

Alice and Bob met to agree on a

secret key k in G(1n)

Shannon ‘49:

Perfect Secrecy Theory

Adversary: unbounded computationally,

security analysis is information theoretic

Shannon

http://scienceworld.wolfram.com/biography/photo-credits.html#Shannon

What Does the Adversary Know?

• Kerckohoff Law: A cryptographic system should be secure
even if everything about the system (the algorithms G,E and D)
is known to the adversary except for the key and the
randomness used by legal users in the course of running E & D

• Good for ML too…

• Ciphertext Only: Can see c transmitted over an insecure
channel

Perfect Secrecy (aka Shannon secrecy)

(G,E,D) satisfies

Shannon-secrecy if:

 probability distribution over M,

 c ∈C,  m ∈ M

Pr [M=m] = Pr[M=m |E(K,M)=c]

A-priori = A-posteriori

:When a r.v.

(random variable)

Appears in a context of

prob statement., the

prob is taken over the

choices of the r.v.

Slight Notational Abuse: All
capital letters denote r.v’s
and prob distribution at the
same time

Note : Adversary is not explicitly used

In the definition but Is implicitly there

computing probabilities…

Perfect Indistinguishability (Alternative Definition)

(G,E,D) satisfies

Perfect indistinguishability if :

Probability distribution over M

 m0, m1 ∈ M,

c ∈ C

Prob [E(K,m0)=c] = Prob [E(K,m1)=c]

World 0: World 1:

𝑐 = 𝐸 𝑘, 𝑚0 𝑐 = 𝐸 𝑘, 𝑚1

k ← G(1n) k ← G(1n)

Let EVE be an unbounded adversary,
EVE can’t distinguish worlds apart

∀m0,m1

Prob(EVE (c)=b) = ½
(over k G(1n), b  {0,1}, c  E(k,mb))

∀m0,m1

Probk(EVE (c)=1 on c  E(K,m1)) =
Probk(EVE (c)=1 on c  E(K,m0))

The Definitions are Equivalent

Theorem:

 (G,E,D) satisfies Perfect indistinguishability

 if and only if

 (G,E,D) satisfies Perfect secrecy.

Proof: Simple use of Bayes Theorem

In notes

Shannon Secrecy is Achievable via One Time Pad

One Time Pad: G chooses k at random in {0,1}n

 E(k,m)=km,

 D(k,c)=kc

How about using one-time pad to send more than one
message?

Q: Would it preserve Shannon Secrecy?
A: No, Consider the case of two messages each of length
n, each encrypted by “xoring” the message with the
same sk.

Shannon Theorem: For any perfect secrecy schemes, |K|  |M|
Namely, the key is as long as the message.

One Time Pads

Disadvantage

• The size of the key is huge: as many key bits as message bits and need
to know in advance how many message bits

• Receiver needs to know which key goes with which ciphertext (some
synchronization or state)

Advantage
• By Shannon’s Theorem, it is IMPOSSIBLE TO DO ANY BETTER

How to get around Impossibilities (first lecture)

✓Weaken the adversary model

• Weaken your definition of security

• Find new class of assumptions

Prepare for Worst Case Adversary Strategy

AI systems are VERY attractive targets

• Adversarial modeling:

➢ Prepare for worst case adversary

➢ Probabilistic Polynomial Time

Probabilistic Polynomial Time algorithms (PPT)

• A runs in polynomial time O(nc) for some c>0.
where n is its input length (security parameter)

• A is randomized: can flip fair coins

• Las Vegas: input, A is correct or

 with negligible probability A outputs ⫠

• Monte Carlo: input, A is correct

 With all but negligible probability

Modern Cryptography
1976, New Directions in Cryptography

img19

“

”
W. Diffie, M. Hellman, “New Directions in Cryptography”, 1976.

The Adversary
Polynomial time

http://modular.fas.harvard.edu/edu/Fall2001/124/lectures/lecture8/html/img19.png

Lessons from Impossibilities (first lectre)

✓Weaken the adversary model

• Weaken your definition of security

• Find new class of assumptions

Encryption scheme (Revisit Def)

An encryption scheme (G,E,D) is a triplet of PPT algorithms s.t.
• key Generation G(1n) outputs pairs of keys (sk,pk) of length n
 [n is also called the security parameter]
• Encryption E(pk,m) outputs ciphertext c
• Decryption D(sk,c) outputs plaintext m’

Requirements:
• Correctness: D(sk,E(pk,m)) = m ∀m with high probability over (implicit)

coins of G, E and D

• Security Computational Indistinguishability

Computational Indistinguishability

(G,E,D) satisfies computationally
 indistinguishability if

 ∀PPT EVE,

 ∀ PPT sampleable M,

 ∀ 𝑚0, 𝑚1 in M(1n),

Pr Eve (c)=b ≤
1

2
+ 𝑛𝑒𝑔𝑙(𝑛)

 over 𝑘 ← G(1n); 𝑏 ← 0,1 ;
𝑐 = 𝐸 𝑘, 𝑚𝑏

World 0: World 1:

𝑐 = 𝐸 𝑘, 𝑚0
𝑐 = 𝐸 𝑘, 𝑚1

k ← G (1n) k ← G(1n)

PPT EVE can’t distinguish t worlds
apart

m0 ← M (1n) m1 ← M(1n)

|Probk(EVE (c)=1 on c  E(K,m1)) -
 Probk(EVE (c)=1 on c  E(K,m0))|<
negl(n)

Important Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p.

Definition: A function 𝜇: ℕ → ℝ is negligible if
 for every polynomial function p,
 for all sufficiently large n:

 𝝁(n) < 1/p(n)

there exists an 𝑛0

s.t.

for all 𝑛 > 𝑛0:

Events that occur with negligible probability look to poly-
time algorithms like they never occur.

Notation: negl(n) denotes a function which is negligible in n

Game Formulation: Computational Indistinguishability

No PPT adversary can win the following game:

(Public-Key Encryption Scheme : even if Adv is given access to pk)

AdversaryChallenger

m0, m1

b’

Adversary wins: if b=b’

 better then ½+ 1/P(n) for some polynomial P (i.e non-negligible (security parameter)

C=E(K, mb) br

Challenge

Now Can Ask New Questions

Can A and B meet to agree on key and subsequently exchange
P(n) messages securely, where P is any polynomial?

Yes

Can A and B exchange messages without meeting

Yes

How?

Lessons from Impossibilities (first lectre)

✓Weaken the adversary model

✓Weaken your definition of security

• Make assumptions

Ambitious Plan for next 2 lectures

▪ New Primitive: Secure Pseudo Random Generators (PRG)

▪ PRG imply Encryption schemes that satisfy Computational Indistinguishability

 with |keys| << |message bits|

• Build PRG from One Way Functions

• Candidate One Way Functions

• New Primitive: Secure Pseudo Random Functions (PRF)

• Applications of PRF
• ∃ concepts which are not PAC learnable

Pseudo-random Generators

Informally: Deterministic Programs that stretch a “truly

random” seed into a (much) longer sequence of

“seemingly random” bits.

b1 b2 b3 ...PRG Gseed

What about Sources of True Randomness
for the seed?

1) Specialized Hardware: e.g. Transistor noise

2) User Input: Every time random number used,

 user is queried

Usually biased, but can “extract” unbiased bits
assuming the source has “some structure and enough
entropy” [von Neumann, Elias, Blum]

True randomness is an expensive

non-replicable commodity.

Strong Pseudo Random Number Generator

Def 1 [Indistinguishability]

“No polynomial-time algorithm can distinguish between the
output of a PRG on a random seed vs. a truly random string”

= “as good as” a truly random string for all practical purposes.

Def 2 [Next-bit Unpredictability]

“No polynomial-time algorithm can predict the (i+1)th bit of the

output of a PRG given the first i bits”

Def 3 [Incompressibility]

“No polynomial-time algorithm can compress the output of the

PRG into a shorter string”

PRG Def 1: Indistinguishability

Notation: Un (resp. Um) denotes the uniform distribution on n-bit

(resp. m-bit) strings; m is shorthand for m(n).

Definition [Indistinguishability]:

A deterministic polynomial-time computable function G: {0,1}n →

{0,1}m is a PRG which “passes all poly time statistical tests” if

(a) m > n and

(b) for every PPT algorithm D, there is a negligible function negl

such that:

| Pr[D(G(Un)) = 1] – Pr[D(Um) = 1] | = negl(n)

PRG Def 1: Indistinguishability

Definition [Indistinguishability]:

A deterministic polynomial-time computable function G: {0,1}n →

{0,1}m is a PRG which “passes all poly time statistical tests” if

(a) m > n and

(b) for every PPT algorithm D, there is a negligible function negl

such that:

| Pr[D(G(Un)) = 1] – Pr[D(Um) = 1] | = negl(n)

We call D that takes a sequence and outputs 0 or 1

a statistical test.

PRG Def 1: Indistinguishability

WORLD 1:

Pseudorandom World

y ← G(Un)

WORLD 2:

Truly Random World
y ← Um

PPT Distinguisher gets y but

cannot tell which world she is in

Def: A deterministic function G: {0,1}n → {0,1}m is a strong PRG

if m > n and for every PPT algorithm D,

 there is a negligible function negl such that:

 | Pr[D(G(Un)) = 1] – Pr[D(Um) = 1] | = negl(n)

Why is this a good definition

Good for all Applications:
As long as we can find truly random seeds, can
replace true randomness by the output of
PRG(seed) in ANY “computational” setting.

If it behaves differently,
can convert “application”=statistical test

Enables to overcome Shannon Theorem

|key|≥|message|

PRG ⟹

𝐺𝑒𝑛 1𝑛 : Generate a random 𝑛-bit key k.

𝐸 𝑘, 𝑚 where 𝑚 is an (𝒏 + 𝟏)-bit message:

Expand k into a (n+1)-bit pseudorandom string k′ = 𝐺(k)

One-time pad with k′: ciphertext is 𝑘′⨁𝑚

𝐷 𝑘, 𝑐 outputs G(𝑘)⨁𝑐

(How to Encrypt n+1 bits using an n-bit key)

𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐧𝐞𝐬𝐬: 𝐷 𝑘, 𝑐 outputs G 𝑘 ⨁𝑐 = G 𝑘 ⨁𝐺 𝑘 ⨁m = m

For longer messages
Expand G(k) for more bits

Security: EVE can’t distinguish between Un+1⨁𝑚0 𝑎𝑛𝑑 Un+1⨁𝑚1 Since

they are both uniform. If EVE can distinguish between
G(Un)⨁𝑚0 𝑎𝑛𝑑 G(Un)⨁𝑚1
𝑡ℎ𝑒𝑛, EVE can distinguish G(Un) from Un+1, contradiction.

(Length extension:
If there is a PRG that stretches
by one bit, there is one that stretches by polynomialy many bits)

Cryptography

Randomness

Randomness is the foundation of cryptography

Cryptographic keys have to be unpredictable to the adversary

• Cryptographic algorithms use additional randomness (beyond the
key)

• If the random bits are revealed (or are predictable) the entire
structure can collapse

Randomness in Machine Learning

LLM algorithm

1

input output

Randomness
Source

Crucial for training (SGD, ERM use sampling)
 and for generating

Raises interesting questions
• Can bad use of randomness lead to bias outcomes
• Can use of special PSRG enforce ML-desirable properties

Pass All Statistical Test is a great
definition

But: it’s hard to work with. How could you
show that generator G passes ALL statistical
tests?

Do PRG that pass all statistical tests even
Exist?

PRG Def 2: (Next-bit) Unpredictability

Definition [Next-bit Unpredictability]:

A deterministic polynomial-time computable function G: {0,1}n →

{0,1}m is a PRG if

(a) m > n and

(b) for every PPT algorithm PRED and every i ∈ [1..m], there is a

negligible function negl such that:

Pr[PRED(y1y2…yi-1) = yi] < ½ + negl(n)

Over y ← G(Un):

Notation: yi denotes the i-th bit of y.

y1…i denotes the first i bits of y.

PRG Def 2: (Next-bit) Unpredictability

Definition [Next-bit Unpredictability]:

A deterministic polynomial-time computable function G: {0,1}n →

{0,1}m is a PRG if

(a) m > n and

(b) for every PPT algorithm PRED and every i ∈ [1..m], there is a

negligible function negl such that:

Pr[PRED(y1y2…yi-1) = yi] < ½ + negl(n)

Over y ← G(Un):

Notation: Call PRED a “next-bit test” and if (b) holds, we say

that G “passes all next bit tests “

Def 1 and Def 2 are Equivalent

Theorem: A PRG G passes all polynomial time statistical tests if

and only if it passes all polynomial time next-bit tests

Proof: → 𝐸𝑎𝑠𝑦,

 ←
𝐻𝑎𝑟𝑑𝑒𝑟. Show that any statistical test can be turned

into a predictior for a next bit, via a Hybrid Argument

Next: Using One Way Functions will Build a PRG and
prove that it passes all next-bit tests, hence CSPRG

One Way Functions

f: {0,1}*  {0,1}* is a one-way function(OWF) if:

• Easy to Evaluate:  PPT algorithm A s.t. A(x)=f(x)  x.

• Hard to Invert:  PPT algorithms Inv,  n sufficiently large,

 prob (Inv(y) =x’ s.t. y=f(x’)) < neg(n)

 x  {0,1}n, y=f(x), coins of Inv

x f(x)
Easy to compute in PPT

hard to invert in
PPT on average

functions s.t. |f x| = x . Length preserving OWF:

One-way Permutations: One-to-one length preserving OWF

Collection of One-way Functions

A function (collection) 𝑓𝑛 𝑛∈ℕ where 𝑓𝑛: {0,1}𝑛→ {0,1}𝑚(𝑛) is
one-way if easy to evaluate fn(x) for all x, and
 hard to invert: ∀PPT 𝐼𝑛𝑣, ∀n sufficiently large

Pr 𝐼𝑛𝑣 𝑦 = 𝑥′ 𝑠. 𝑡. 𝑦 = 𝑓𝑛 𝑥′ ≤ 𝑛𝑒𝑔𝑙(𝑛)
 over 𝑥 ← 0,1 𝑛; 𝑦 = 𝑓𝑛 𝑥 ;

• Can always find an inverse with unbounded time

• … but should be hard with probabilistic polynomial time

One-way Functions: Candidates

f(𝑎1, … , 𝑎𝑛, 𝑥1, … , 𝑥𝑛) = (𝑎1, … , 𝑎𝑛,σ𝑖=1
𝑛 𝑥𝑖𝑎𝑖 mod

2𝑛+1)
where 𝑎𝑖 random n-bit numbers, and 𝑥𝑖 are random bits.

Subset sum:

One-way functions candidates are abundant in nature.

Many other candidates from number theory, coding theory,
combinatorics later in class.

Rabin: fN(x) = x
2 mod N

Is as hard to invert as

factoring N

RSA. fN(x) = x
e mod N

DHg,p(x) = g^x mod p

Attempt: Strong- PSRG
from one-way permutations

Idea: Let f be one-way permutation.

• Choose random seed s in {0,1}n

• Compute f(s) f2(s) f3(s) … f m(s)

• Output in reverse order

• Why is this a good idea, Intuitively, ?

• Somewhat Unpredictable: From fi(s) can’t compute fi-1(s)

• Why not good enough ?

• Even though you cannot predict fi-1(s) some bits of it may
be predictable.

• Still, may be can be salvaged: there must be some bits of f-1(s)
that are hard to compute for a random s.

Exercise: There are one-way functions for which it is
easy to compute the first half of the bits of the inverse.

Hard Core Predicates for OWF

A hard-core predicate for one-way function f:{0,1}* →{0,1}*

is a Boolean predicate B: {0,1}* → {0,1} such that

B(x) is easy to compute given x but hard to predict given f(x)

x Easy y=f(x)

Easy

B(X)

Unpredictable

Hard

 PPT algorithm P (“predictor”),

Prob [P(y) = B(x)]= ½ + negl(n)

(over x in {0,1}n , y=f(x)

and Pred’s coins)

Discussion on the Definition

1. Some functions can have information-theoretically hard to
guess predicates (e.g., compressing functions)

2. We’ll be interested in settings where 𝑥 is uniquely determined
given f 𝑥 (𝑖. 𝑒 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠) yet B(𝑥)is hard to predict given
F 𝑥 .

3. Ex: LSB(x) is hard-core for RSA(x) but not for DH(x)

4. Is there a universal hard-core predicate?

Constructing PSRG

Theorem: If there exist one-way-permutations f with hard core
bit B, then there exist strong PRG

 G:{0,1}n->{0,1}P(n) for any polynomial P.

Proof: Let P be a polynomial function, set m=P(n)

 On input seed s from Un,

 G(s): (1) compute f(s) f(f(s)) … f(fm-1(s))

 (2) output B(s) B(f(s)) … B(fm-1(s))

Picture Better than 1000 words

s f(s) B(s)

Output
Internal

Configuration

f(2)(s)

f(3)(s)

Input

B(f(s))

B(f (2)(s))

B(f (m-1)(s))fm(s)

Proof : Show outputs of G pass all next-bit tests.

Suppose, for contradiction, ∃bit location j<m and next bit
predictor P s.t.

Then show a predictor P’ for Hard-Core B of f:

P’(f(x)):

 1. compute f(f(x)) … f (f j-1(x))

 2. compute B(f(x)) … B(f j-1(x))

 yj-1 y1

 3. Output P(y1 … yj-1)

= =

Pr y ← G(Un)[P(y1y2…yj-1) = yi] > ½ + 1/P(n) for poly P

EUREKA: the next bit yI. in the sequence should be B(x)
And we assumed that P predicts next bit yi with prob. ½+ 1/P(n)

Proof : Show outputs of G pass all next-bit tests.

Suppose, for contradiction, ∃bit location j<m and next bit
predictor P s.t.

Then show a predictor P’ for Hard-Core B of f:

P’(f(x)):

 1. compute f(f(x)) … f (f j-1(x))

 2. compute B(f(x)) … B(f j-1(x))

 yj-1 y1

 3. Output P(y1 … yj-1)

= =

Pr y ← G(Un)[P(y1y2…yj-1) = yi] > ½ + 1/P(n) for poly P

Claim: Pr[P’(f(x)=B(x)]=Prob[P(b1 … bj-1)=bj]>½ + 1/P(n) contradiction

Essential to Proof: f is a permutation ⇒y1 … yj-1 is the same distribution

 as P is expecting and will perform well on.

We just went through
A sequence of reductions

• Since B is hard-core for one-way function f, P’ cannot exist

⇒ Next bit test P cannot exist

⇒ G passes all next bit tests

⇒G passes all polynomial time statistical tests

⇒G outputs are computationally indistinguishable from random

 One Way Functions vs.
One Way Permutations

Theorem: If ∃one-way-functions ,

 then ∃CS-PSRG

 G:{0,1}n->{0,1}P(n) for any polynomial P.

Proof: Much Harder

 See web site [HILL]

Does every one-way function
have a hardcore bit?

(Hard) Exercise: There are functions that are one-way, yet every

bit is somewhat easy to predict (say, with probability
1

2
+ 1/𝑛).

So, we will generalize the notion of a hardcore “bit”.

Goldreich-Levin (GL) Theorem

Let {𝐵𝑟: {0,1}𝑛→ {0,1}} where

be a collection of predicates (one for each 𝑟). Then, a random
𝐵𝑟 is hardcore for every one-way function 𝐹. That is, for every
one-way function F, every PPT A, there is a negligible function
𝜇 s.t.

 𝐵𝑟 𝑥 = 𝑟, 𝑥 = σ𝑖=1
𝑛 𝑟𝑖𝑥𝑖 mod 2

Pr 𝐼𝑛𝑣 𝑓 𝑥 , 𝑟 = 𝐵𝑟(𝑥) ≤
1

2
+ 𝜇 𝑛

 𝑥 ← 0,1 𝑛; 𝑟 ← 0,1 𝑛:

Alternative Interpretation 1: For every one-way function 𝐹,
there is a related one-way function 𝑓′ 𝑥, 𝑟 = (𝑓 𝑥 , 𝑟) which
has a deterministic hardcore predicate.

Every OWF Has an Associated Hard-Core Bit

Example of strong PRG: based on Goldreich-
Levin Hard Core Bit

• Use the same r and even can make r public

x f(x) B(x,r) =<x,r>

Output
Internal

Configuration

r

f(2)(x)

f(3)(x)

Input

B(f(x),r)=<f(x),r>

B(f (2)(x),r)=<f(2)(x),r>

B(f (t-1)(x),r)=<f(t-1)(x),r>f(t)(x)

Extenders

• Theorem: If there exists a CS-PSRG that extends n bits to n+1 bits,
then there exists a CS-PSRG that extends n bits to any polynomial
length.

CS PRG with a Single bit extension can be converted to
many bit extension (same proof idea)

• Excersize: what are the hybrids you would define to
prove that this works?

x x1 =g(x)|n g(x)|n+1

Output

Internal

ConfigurationInput
Building Block:

Single Bit
Expanding

CS-PSRG

g:{0,1}n  {0,1}n+1

x2 =g(x1)|n g(x1)|n+1

x3 =g(x2)|n g(x2)|n+1

xm =g(xm-1)|n g(xm)|n+1

… …

What did we do today

1. Defined one-way functions (OWF).

2. Defined Hardcore bits (HCB).

4. Goldreich-Levin Theorem: every OWF has a HCB.

3. Show that one-way permutations (OWP) ⇒ PRG

(in fact, one-way functions ⇒ PRG, but that’s a much
harder theorem)

Extra slides
Notation, Missing Proofs

	Default Section
	Slide 1: Cryptography and Machine Learning: Foundations and Frontiers Lecture 4: Crypto Basics 1
	Slide 2
	Slide 3: Encryption scheme
	Slide 4
	Slide 5
	Slide 6: What Does the Adversary Know?
	Slide 7: Perfect Secrecy (aka Shannon secrecy)
	Slide 8: Perfect Indistinguishability (Alternative Definition)
	Slide 9: The Definitions are Equivalent
	Slide 10: Shannon Secrecy is Achievable via One Time Pad
	Slide 11: One Time Pads
	Slide 12: How to get around Impossibilities (first lecture)
	Slide 13: Prepare for Worst Case Adversary Strategy
	Slide 14: Probabilistic Polynomial Time algorithms (PPT)
	Slide 15: Modern Cryptography
	Slide 16: Lessons from Impossibilities (first lectre)
	Slide 17: Encryption scheme (Revisit Def)
	Slide 18: Computational Indistinguishability
	Slide 19
	Slide 20: Game Formulation: Computational Indistinguishability
	Slide 21: Now Can Ask New Questions
	Slide 22: Lessons from Impossibilities (first lectre)

	Default Section
	Slide 24: Ambitious Plan for next 2 lectures

	Default Section
	Slide 25: Pseudo-random Generators
	Slide 26: What about Sources of True Randomness for the seed?
	Slide 27: Strong Pseudo Random Number Generator
	Slide 28: PRG Def 1: Indistinguishability
	Slide 29: PRG Def 1: Indistinguishability
	Slide 30: PRG Def 1: Indistinguishability
	Slide 31: Why is this a good definition
	Slide 32
	Slide 33: Cryptography
	Slide 34: Randomness in Machine Learning
	Slide 35: Pass All Statistical Test is a great definition
	Slide 36: PRG Def 2: (Next-bit) Unpredictability
	Slide 37: PRG Def 2: (Next-bit) Unpredictability
	Slide 38: Def 1 and Def 2 are Equivalent
	Slide 39: One Way Functions
	Slide 40
	Slide 41
	Slide 43: Attempt: Strong- PSRG from one-way permutations
	Slide 44: Hard Core Predicates for OWF
	Slide 45
	Slide 46: Constructing PSRG
	Slide 47: Picture Better than 1000 words
	Slide 48: Proof : Show outputs of G pass all next-bit tests.
	Slide 49: Proof : Show outputs of G pass all next-bit tests.
	Slide 50: We just went through A sequence of reductions
	Slide 51: One Way Functions vs. One Way Permutations
	Slide 52
	Slide 53
	Slide 54: Example of strong PRG: based on Goldreich-Levin Hard Core Bit
	Slide 55: Extenders
	Slide 56: CS PRG with a Single bit extension can be converted to many bit extension (same proof idea)
	Slide 57

	Intro
	Slide 58: Extra slides

